Three-dimensional imaging of individual dopant atoms in SrTiO3.
نویسندگان
چکیده
We report on three-dimensional (3D) imaging of individual Gd dopant atoms in a thin (∼2.3 nm) foil of SrTiO3, using quantitative scanning transmission electron microscopy. Uncertainties in the depth positions of individual dopants are less than 1 unit cell. The overall dopant concentration measured from atom column intensities agrees quantitatively with electrical measurements. The method is applied to analyze the 3D arrangement of dopants within small clusters containing 4-5 Gd atoms.
منابع مشابه
Variable-angle high-angle annular dark-field imaging: application to three-dimensional dopant atom profiling
Variable-angle high-angle annular dark-field (HAADF) imaging in scanning transmission electron microscopy is developed for precise and accurate determination of three-dimensional (3D) dopant atom configurations. Gd-doped SrTiO3 films containing Sr columns containing zero, one, or two Gd dopant atoms are imaged in HAADF mode using two different collection angles. Variable-angle HAADF significant...
متن کاملThree-dimensional ADF imaging of individual atoms by through-focal series scanning transmission electron microscopy.
Aberration correction in scanning transmission electron microscopy has more than doubled the lateral resolution, greatly improving the visibility of individual impurity or dopant atoms. Depth resolution is increased five-fold, to the nanometer level. We show how a through-focal series of images enables single Hf atoms to be located inside an advanced gate dielectric device structure to a precis...
متن کاملFermi surface and superconductivity in low-density high-mobility δ-doped SrTiO3.
The electronic structure of low-density n-type SrTiO3 δ-doped heterostructures is investigated by angular dependent Shubnikov-de Haas oscillations. In addition to a controllable crossover from a three- to two-dimensional Fermi surface, clear beating patterns for decreasing dopant layer thicknesses are found. These indicate the lifting of the degeneracy of the conduction band due to subband quan...
متن کاملNondestructive imaging of atomically thin nanostructures buried in silicon
It is now possible to create atomically thin regions of dopant atoms in silicon patterned with lateral dimensions ranging from the atomic scale (angstroms) to micrometers. These structures are building blocks of quantum devices for physics research and they are likely also to serve as key components of devices for next-generation classical and quantum information processing. Until now, the char...
متن کاملInfluence of Cr dopant on the microstructure and optical properties of ZnO nanorods
One-dimensional (1D) undoped and Cr doped ZnO nanorods with average length of 1 µm and diameter of 80 nm were synthesized using hydrothermal method where a fast growth of ZnO nanorods on the seed layer was observed. Afterwards, the effects of Cr dopant on structural, surface morphology and optical properties of nanorods were studied using X-ray diffraction (XRD), scanning electron microscopy (S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 111 26 شماره
صفحات -
تاریخ انتشار 2013